3 research outputs found

    ArduSim: Accurate and real-time multicopter simulation

    Full text link
    [EN] As the popularity and the number of Unmanned Aerial Vehicles (UAVs) increases, new protocols are needed to coordinate UAVs when flying autonomously, and to avoid that these UAVs collide with each other. Directly testing such novel protocols on real UAVs is a complex procedure that requires investing much time, money and research effort. Hence, it becomes necessary to have the possibility to first test different solutions using simulation. Unfortunately, existing tools present significant limitations: some of them only simulate accurately the flight behavior of one UAV, while some other simulators can manage several UAVs simultaneously, but not in real-time, thus loosing accuracy regarding the mobility pattern of the UAV. In this work we address such problem by introducing ArduSim, a novel simulator that allows controlling in soft real-time the flight and communications of multiple UAVs, being the developed protocols directly portable to real devices. The contributions of this work include: (i) the ArduSim simulation platform, which allows realistic simulation and control of multiple UAVs simultaneously, offering functionalities not provided by existing alternatives; (ii) a model for the WiFi communications link between UAVs, based on real experiments, and that is integrated into ArduSim itself; and (iii) a thorough study of the scalability performance of our simulator.This work was supported by the Ministerio de Economia y Competitividad for the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I SMART@CARPHONE: Integracion del smartphone y el vehiculo para conectar conductores, sensores y entorno a traves de una arquitectura de servicios funcionales" (grant number TEC2014-52690-R), and the Universitat Politecnica de Valencia (UPV) under program "Contratos Pre-doctorales para la Formacion de Personal Investigador (FPI)" (grant number 0060100000).Fabra Collado, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory. 87:170-190. https://doi.org/10.1016/j.simpat.2018.06.009S1701908

    A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions

    Get PDF
    [EN] As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps rising steadily, the chances that these devices get close to each other during their flights also increases, causing concerns regarding potential collisions. This paper proposed the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrated the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 s for each risky situation successfully handled.This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00, and the Universitat Politecnica de Valencia (UPV) under grant number FPI-2017-S1 for the training of PhD researchers.Fabra Collado, FJ.; Zamora-Mero, WJ.; Sangüesa-Escorihuela, JA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2019). A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions. Sensors. 19(10):1-25. https://doi.org/10.3390/s19102404S1251910Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 153, 119293. doi:10.1016/j.techfore.2018.05.004SESAR Joint Undertakinghttps://www.sesarju.eu/Fabra, F., T. Calafate, C., Cano, J.-C., & Manzoni, P. (2018). MBCAP: Mission Based Collision Avoidance Protocol for UAVs. 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA). doi:10.1109/aina.2018.00090Drone Collision Avoidancehttps://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002Liu, Z., & Foina, A. G. (2016). Feature article: an autonomous quadrotor avoiding a helicopter in low-altitude flights. IEEE Aerospace and Electronic Systems Magazine, 31(9), 30-39. doi:10.1109/maes.2016.150131Xiang, J., Liu, Y., & Luo, Z. (2016). Flight safety measurements of UAVs in congested airspace. Chinese Journal of Aeronautics, 29(5), 1355-1366. doi:10.1016/j.cja.2016.08.017Lin, Q., Wang, X., & Wang, Y. (2018). Cooperative Formation and Obstacle Avoidance Algorithm for Multi-UAV System in 3D Environment. 2018 37th Chinese Control Conference (CCC). doi:10.23919/chicc.2018.8483113Zhou, X., Yu, X., & Peng, X. (2019). UAV Collision Avoidance Based on Varying Cells Strategy. IEEE Transactions on Aerospace and Electronic Systems, 55(4), 1743-1755. doi:10.1109/taes.2018.2875556Kim, H., & Ben-Othman, J. (2018). A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT. IEEE Communications Letters, 22(12), 2587-2590. doi:10.1109/lcomm.2018.2875477Wang, M., Voos, H., & Su, D. (2018). Robust Online Obstacle Detection and Tracking for Collision-Free Navigation of Multirotor UAVs in Complex Environments. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). doi:10.1109/icarcv.2018.8581330Ma, L. (2018). Cooperative Target Tracking using a Fleet of UAVs with Collision and Obstacle Avoidance. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). doi:10.1109/icstcc.2018.8540717Chen, P.-H., & Lee, C.-Y. (2018). UAVNet: An Efficient Obstacel Detection Model for UAV with Autonomous Flight. 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). doi:10.1109/icoias.2018.8494201Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009Accurate and real-time multi-UAV simulationhttps://bitbucket.org/frafabco/ardusim/src/master/MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/startGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. doi:10.1016/j.rse.2017.06.031NS-2 The Network Simulatorhttp://nsnam.sourceforge.net/wiki/index.php/Main_PageOMNeT++ Discrete Event Simulatorhttps://omnetpp.org/Quaternium, Home of the Longest Flight Time Hybrid Dronehttp://www.quaternium.com/Gauss-Markov Mobilityhttps://doc.omnetpp.org/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.htmlFerrera, E., Alcántara, A., Capitán, J., Castaño, A., Marrón, P., & Ollero, A. (2018). Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments. Sensors, 18(12), 4101. doi:10.3390/s1812410

    Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition

    Full text link
    [EN] Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56×56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m.This work was funded by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00.Wubben, J.; Fabra Collado, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Krzeszowski, T.; Márquez Barja, JM.; Cano, J.; Manzoni, P. (2019). Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition. Electronics. 8(12):1-16. https://doi.org/10.3390/electronics8121532S116812Pan, X., Ma, D., Jin, L., & Jiang, Z. (2008). Vision-Based Approach Angle and Height Estimation for UAV Landing. 2008 Congress on Image and Signal Processing. doi:10.1109/cisp.2008.78Tang, D., Li, F., Shen, N., & Guo, S. (2011). UAV attitude and position estimation for vision-based landing. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. doi:10.1109/emeit.2011.6023131Gautam, A., Sujit, P. B., & Saripalli, S. (2014). A survey of autonomous landing techniques for UAVs. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi:10.1109/icuas.2014.6842377Holybro Pixhawk 4 · PX4 v1.9.0 User Guidehttps://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.htmlGarrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51, 481-491. doi:10.1016/j.patcog.2015.09.023Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers. Image and Vision Computing, 76, 38-47. doi:10.1016/j.imavis.2018.05.004ArUco: Augmented reality library based on OpenCVhttps://sourceforge.net/projects/aruco/Jin, S., Zhang, J., Shen, L., & Li, T. (2016). On-board vision autonomous landing techniques for quadrotor: A survey. 2016 35th Chinese Control Conference (CCC). doi:10.1109/chicc.2016.7554984Chen, X., Phang, S. K., Shan, M., & Chen, B. M. (2016). System integration of a vision-guided UAV for autonomous landing on moving platform. 2016 12th IEEE International Conference on Control and Automation (ICCA). doi:10.1109/icca.2016.7505370Nowak, E., Gupta, K., & Najjaran, H. (2017). Development of a Plug-and-Play Infrared Landing System for Multirotor Unmanned Aerial Vehicles. 2017 14th Conference on Computer and Robot Vision (CRV). doi:10.1109/crv.2017.23Shaker, M., Smith, M. N. R., Yue, S., & Duckett, T. (2010). Vision-Based Landing of a Simulated Unmanned Aerial Vehicle with Fast Reinforcement Learning. 2010 International Conference on Emerging Security Technologies. doi:10.1109/est.2010.14Araar, O., Aouf, N., & Vitanov, I. (2016). Vision Based Autonomous Landing of Multirotor UAV on Moving Platform. Journal of Intelligent & Robotic Systems, 85(2), 369-384. doi:10.1007/s10846-016-0399-zPatruno, C., Nitti, M., Petitti, A., Stella, E., & D’Orazio, T. (2018). A Vision-Based Approach for Unmanned Aerial Vehicle Landing. Journal of Intelligent & Robotic Systems, 95(2), 645-664. doi:10.1007/s10846-018-0933-2Baca, T., Stepan, P., Spurny, V., Hert, D., Penicka, R., Saska, M., … Kumar, V. (2019). Autonomous landing on a moving vehicle with an unmanned aerial vehicle. Journal of Field Robotics, 36(5), 874-891. doi:10.1002/rob.21858De Souza, J. P. C., Marcato, A. L. M., de Aguiar, E. P., Jucá, M. A., & Teixeira, A. M. (2019). Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic. Journal of Control, Automation and Electrical Systems, 30(4), 522-531. doi:10.1007/s40313-019-00465-ySITL Simulator (Software in the Loop)http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.htmlFabra, F., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2017). On the impact of inter-UAV communications interference in the 2.4 GHz band. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). doi:10.1109/iwcmc.2017.7986413MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/startFabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009Careem, M. A. A., Gomez, J., Saha, D., & Dutta, A. (2019). HiPER-V: A High Precision Radio Frequency Vehicle for Aerial Measurements. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). doi:10.1109/sahcn.2019.882490
    corecore